The PAS Domain-Containing Protein HeuR Regulates Heme Uptake in Campylobacter jejuni

نویسندگان

  • Jeremiah G Johnson
  • Jennifer A Gaddy
  • Victor J DiRita
چکیده

Campylobacter jejuni is a leading cause of bacterially derived gastroenteritis. A previous mutant screen demonstrated that the heme uptake system (Chu) is required for full colonization of the chicken gastrointestinal tract. Subsequent work identified a PAS domain-containing regulator, termed HeuR, as being required for chicken colonization. Here we confirm that both the heme uptake system and HeuR are required for full chicken gastrointestinal tract colonization, with the heuR mutant being particularly affected during competition with wild-type C. jejuni Transcriptomic analysis identified the chu genes-and those encoding other iron uptake systems-as regulatory targets of HeuR. Purified HeuR bound the chuZA promoter region in electrophoretic mobility shift assays. Consistent with a role for HeuR in chu expression, heuR mutants were unable to efficiently use heme as a source of iron under iron-limiting conditions, and mutants exhibited decreased levels of cell-associated iron by mass spectrometry. Finally, we demonstrate that an heuR mutant of C. jejuni is resistant to hydrogen peroxide and that this resistance correlates to elevated levels of catalase activity. These results indicate that HeuR directly and positively regulates iron acquisition from heme and negatively impacts catalase activity by an as yet unidentified mechanism in C. jejuni IMPORTANCE: Annually, Campylobacter jejuni causes millions of gastrointestinal infections in the United States, due primarily to its ability to reside within the gastrointestinal tracts of poultry, where it can be released during processing and contaminate meat. In the developing world, humans are often infected by consuming contaminated water or by direct contact with livestock. Following consumption of contaminated food or water, humans develop disease that is characterized by mild to severe diarrhea. There is a need to understand both colonization of chickens, to make food safer, and colonization of humans, to better understand disease. Here we demonstrate that to efficiently colonize a host, C. jejuni requires iron from heme, which is regulated by the protein HeuR. Understanding how HeuR functions, we can develop ways to inhibit its function and reduce iron acquisition during colonization, potentially reducing C. jejuni in the avian host, which would make food safer, or limiting human colonization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PAS domain-containing regulator controls flagella-flagella interactions in Campylobacter jejuni

The bipolar flagella of the foodborne bacterial pathogen Campylobacter jejuni confer motility, which is essential for virulence. The flagella of C. jejuni are post-translationally modified, but how this process is controlled is not well understood. In this work, we have identified a novel PAS-domain containing regulatory system, which modulates flagella-flagella interactions in C. jejuni. Inact...

متن کامل

Utilization of lactoferrin-bound and transferrin-bound iron by Campylobacter jejuni.

Campylobacter jejuni NCTC 11168 was capable of growth to levels comparable with FeSO4 in defined iron-limited medium (minimal essential medium alpha [MEMalpha]) containing ferrilactoferrin, ferritransferrin, or ferri-ovotransferrin. Iron was internalized in a contact-dependent manner, with 94% of cell-associated radioactivity from either 55Fe-loaded transferrin or lactoferrin associated with th...

متن کامل

Crystal structure of Campylobacter jejuni ChuZ: a split-barrel family heme oxygenase with a novel heme-binding mode.

The heme oxygenase ChuZ is part of the iron acquisition mechanism of Campylobacter jejuni, a major pathogen causing enteritis in humans. ChuZ is required for C. jejuni to use heme as the sole iron source. The crystal structure of ChuZ was resolved at 2.5Å, and it was revealed to be a homodimer with a split-barrel fold. One heme-binding site was at the dimer interface and another novel heme-bind...

متن کامل

Pumping iron: mechanisms for iron uptake by Campylobacter.

Campylobacter requires iron for successful colonization of the host. In the last 7 years, a wealth of data has been generated allowing detailed molecular characterization of Campylobacter iron-uptake systems. Several exogenous siderophores have been identified as sources of ferric iron for Campylobacter. Ferri-enterochelin uptake requires both the outer-membrane receptor protein CfrA and the in...

متن کامل

Characterization of CetA and CetB, a bipartite energy taxis system in Campylobacter jejuni

The energy taxis receptor Aer, in Escherichia coli, senses changes in the redox state of the electron transport system via an flavin adenine dinucleotide cofactor bound to a PAS domain. The PAS domain (a sensory domain named after three proteins Per, ARNT and Sim, where it was first identified) is thought to interact directly with the Aer HAMP domain to transmit this signal to the highly conser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016